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Abstract

The wavenumber content of periodic light weight profile strips is investigated. Theory of wave propagation in multi-

coupled periodic systems is used to extract the dispersion characteristics of typical configurations. Solving the transfer

matrix eigenvalue problem forms a basis for understanding the wave propagation in (infinite) strips; six characteristic

waves travelling in each direction occur, either propagating, decaying or complex. Each characteristic wave consists of

multiple wavenumbers of different amplitude, forming the so called ‘‘space harmonic’’ series. Typical wave forms of

characteristic waves are shown and form the basis for identifying their relative contributions in the space

harmonic series.

Based on the dynamic stiffness matrix of a single subelement of the periodic system the forced response is calculated for

infinite light weight profile strips. The characteristic wave amplitudes for selected force excitations in combination with the

corresponding wavenumber spectra form the basis for structural acoustic investigations. Input mobilities for the infinite

strip are presented demonstrating the typical pass and stop band behaviour. A brief study of the influence of periodicity

perturbations reveals that for typical profiles, even quite high random length variations up to about 10% have a limited

effect on the structural dynamics of the strip.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Light weight profiles exemplified in Fig. 1 are used in several industrial applications, e.g. for train carriages.
The study focusses on the wave propagation in such structures, which comprise a high static stiffness in
combination with low mass. Often there are two thin outer plates connected via inclined or perpendicular
stiffeners.

Most of the profiles are periodic or nearly periodic and typical effects like pass and stop band behaviour are
expected. Periodic structures have been investigated intensively in the last decades, e.g. Refs. [1–3].

Different approaches to describe the structural–acoustic characteristics of light weight profiles can be found
in literature. The global behaviour of the profile, dominating in the low-frequency regime, is investigated using
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. (a) Periodic light weight plate; (b) cross sections with vertical webs; (c) cross sections with inclined webs.

T. Kohrs, B.A.T. Petersson / Journal of Sound and Vibration 304 (2007) 691–721692
a sandwich approach by Lok and Cheng [4,5]. The structure is treated as an equivalent orthotropic plate. For
higher frequencies, where local vibrations of the structural members appear, different approaches are
necessary. Statistical methods are applied by Geissler and Neumann [6] and Xie et al. [7]. Xie et al.
demonstrate that for a typical railway carriage profile the local vibrations dominate at frequencies above
300Hz.

Pezerat and Guyader [8] use an analytical modal approach to describe the structural acoustic characteristics
of light weight profiles, whereas El-Raheb [9] uses a transfer matrix approach. Pezerat and Guyader focus on
the eigenmodes and the transmission loss, whereas El-Raheb concentrates on the influence of different
parameters (curvature, mass, damping) on the mean structural response of a two-dimensional strip.

Signorelli and von Flotow [10] investigate the wave propagation in periodic truss beams in detail.
Characteristic waves are extracted and the periodic system effects are investigated. As only the translational
degrees of freedom at the joints are included, results are strictly valid only for the special case of suppressed
rotations at the joints. Emaci et al. [11] deal with truss structures of similar shapes and identify the
characteristic waves for the periodic system. In the first part, they use the complete formulation including
rotational components at the joints. No detailed investigation of the wavenumber content is included so that
the results are not applicable for sound radiation phenomena, which is indeed not intended for the investigated
structures there. Ruzzene [12] investigates the dynamics and sound radiation of sandwich beams with
honeycomb truss core and also with a ‘square’ core, similar to one of the geometries investigated here. The
calculation is based on the spectral finite element method and results are presented for finite strip
configurations. No use is made of periodic system theory and the wave propagation is not investigated. Sound
radiation is treated and a comparison with a unit cell analysis with special guided boundary condition agree
principally with the results for the complete strip, at least for the investigated average response for normally
incident pressure wave excitation.

Often the lightweight structures are periodic or nearly periodic. This is especially true for industrial standard
profiles, designed for a variety of applications. The details of the structural loads are unknown or locally
varying and hence no specific (static) design is performed, reinforcing for example the load carrying regions.
Periodic structures show some characteristic effects which have been studied extensively in the past (cf. e.g.
Refs. [13,1–3]). The periodic nature simplifies the calculation procedure as only one periodic subsystem has to
be analysed. The wave propagation of a complete (infinite) profile strip can be deduced from the subsystem
results.

The most important feature of the wave propagation in periodic structures is the existence of pass- and stop-
bands, where unhindered and strongly suppressed wave propagation occurs, respectively. Hence, the wave
propagation undergoes a mechanical bandpass filtering [14].

A general theory for the wave propagation in mono- and multi-coupled structural periodic systems has been
developed by Mead [1,2]. Mono-coupled periodic systems are connected by only one displacement variable in
contrast to multi-coupled systems. The light weight profiles investigated here are typical members of the multi-
coupled case for which a general theory is thoroughly presented in Ref. [15].

In this study an analytical approach is chosen to investigate the wave propagation in the light weight
structures. The calculation model based on analytical beam functions for bending and longitudinal vibrations
is established in Ref. [16]. Three different strip geometries are investigated. The resulting mobilities for these
periodic finite systems show typical pass and stop band behaviour.

In order to get a better understanding of the structure-borne sound characteristics of typical light weight
profiles, the wave propagation in sample strips is investigated. The objective is to identify the characteristic
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waves that propagate or decay in the strips. The wavenumber content of the outer plates forms the basis for
treating sound radiation problems. Based on the calculation model established and validated in Ref. [16], the
wavenumber content and wave forms of the characteristic waves in the infinite light weight structures is
investigated.

The wave amplitudes of the characteristic waves are studied for forced excitation of infinite strips.
Moreover, the influence of structural periodicity perturbations on the behaviour of the strip is discussed
briefly, as in reality no strict periodicity can be achieved, e.g. because of manufacturing tolerances.
2. Dispersion characteristics of profile strips

Three profiles A–C comprising different truss-like core geometries are introduced in Ref. [16] with full
physical properties. The calculation of the strip dynamics is based on analytical beam functions including both
bending and longitudinal vibrations. A detailed description can be found in Ref. [16]. The geometries of the
three profile strips A–C are visualized with their characteristic wave forms in Figs. 10–12.

For the profiles A–C the wavenumber content of the characteristic waves is investigated using three different
methods. The first one uses the determinantal equation resulting from multi-coupled periodic system theory.
The complete set of procedures is illustrated in Fig. 2. In order to catch the wave propagation in the profile
strips without the influence of end reflections, the calculation is performed on prolonged strips or based on
infinite strip theory.
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Fig. 2. Principal ways to determine dispersion characteristics (quantitative wavenumber distribution) of profile strip.
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2.1. Multi-coupled periodic systems and determinantal equation

The subsystems of the light weight profile strips under study are connected at two points with three degrees
of freedom each, resulting in a multi-coupled periodic system with six coupling coordinates. No detailed
review of the theory for multi-coupled periodic systems will be given, but some main features shall be
highlighted.

A single subsystem of the periodic system is coupled to the adjacent subsystems by ndof degrees of freedom
(dofs), which can be arbitrarily translational or rotational dofs. Hence, the mobility matrix of a subsystem
including the left and right connection points can be formulated using a ð2ndof Þ � ð2ndof Þ mobility matrix Y:

vl

vr

( )
¼ Y

Fl

Fr

( )
¼

Yll Ylr

Yrl Yrr

" #
Fl

Fr

( )
. (1)

Here, index l represents quantities on the left-hand side of the element and index r represents the quantities on
the right. The vectors v and F may contain translational and rotational quantities.

Assuming now that the quantities on the left are always related to the quantities on the right by an
exponential factor (Bloch’s theorem), one may write the following relation using the complex propagation
constant m ¼ �d� j�:

fvrg ¼ emfvlg ¼ ejkLefvlg,

fFrg ¼ �e
mfFlg ¼ �e

jkLefFlg. ð2Þ

d is the attenuation constant and � is the phase constant [17, p. 187]. The complex wavenumber k with the real
part defining the phase difference per unit length and the imaginary part the attenuation per unit length, is
included in Eq. (2) in conjunction with the periodic length Le.

Using the exponential ansatz of Eq. (2) in Eq. (1) and performing some algebraic transformations results in
a homogeneous matrix equation which has non-trivial solutions when the determinant of the matrix vanishes,

jYll þ Yrr � emYlr � e�mYrlj ¼ 0. (3)

At any frequency, up to 2ndof different values of m can exist. To each eigenvalue corresponds certain
eigenvectors for Fl and vl.

The phase constant related to propagating waves is multi-valued. If �0 is a solution between 0 and p, then
�n ¼ �0 þ 2pn ðn ¼ 0;�1;�2;�3 . . .Þ is also a solution to Eq. (3).

The phase constant has a distinct relation to the wavenumber as it represents the difference in phase of the
motion in the periodic system at points separated by the periodic distance Le. The corresponding phase
difference per unit length (wavenumber kn) is �n=Le,

kn ¼ �ð2npþ �0Þ=Le. (4)

As a result of the multi-valued travelling components, an infinite series of (harmonic) waves with the given
wavenumbers exists in the periodic system. The positive and negative wavenumbers are related to left- and
rightwards travelling waves, respectively.

In analogy to the wavenumber definition for travelling waves, an imaginary wavenumber component for the
decaying waves can be defined by

kdecay ¼ �jd=Le. (5)

In contrast to the multi-valued solution for the travelling waves, the decaying waves are single valued.
From the solution of the determinantal equation (3) the wavenumbers can be directly calculated. For each

characteristic wave the distribution is fixed between the principal value and the higher and lower values of �n

or kn. However, the overall wavenumber content for a certain excitation depends not only on the structure
itself but also on the amplitudes of the excited characteristic waves. Each characteristic wave contributes to the
overall wavenumber spectrum through its definite wavenumber content, weighted with its wave amplitude.
This definite wavenumber content is detailed in Section 4.
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T. Kohrs, B.A.T. Petersson / Journal of Sound and Vibration 304 (2007) 691–721 695
Herein, the solution of the determinantal equation (3) is limited to purely real or imaginary wavenumbers.
Hence, only the purely propagating and decaying waves are shown in Fig. 3 for strip A. Complex waves are
not included.

As the wavenumber is periodically repeated with 2np=Le, only a fraction of the complete dispersion diagram
can be shown and indeed, there is no benefit of plotting more than �k0 except for the decaying part, plotted in
gray, which is not periodic (imaginary wavenumber).

In order to illustrate the periodic character of the propagating waves the plot is extended beyond the
principal values. Regions in the plot indicate (repeated) rightward or leftward travelling waves.

A drawback of the approach with the determinantal equation relates to the complex valued solutions.
Thereby the wave comprises a propagating and a decaying part. It is a quite laborious task to find the complex
roots of the determinantal equation for each frequency. Hence, for the complete picture including complex
waves, the approach using the transfer matrix presented later is favourable.

2.2. Dispersion characteristics using spatial Fourier transform

For this approach a spatial sampling at discrete points is necessary, resulting in the discrete Fourier
transform (DFT). Having a profile of length L with N equally distributed spatial sampling points,
vq ¼ vðqDxÞ; q ¼ 1; 2; 3; . . . ;Q, results in the following transformation:

Vp ¼ V ðpDkÞ ¼ Dx
XQ

q¼1

vqe
�j2pðpq=QÞ; p ¼ 1; 2; 3; . . . ;Q

¼ Dx
XQ

q¼1

vqe
�j2ppDkxq ; Dk ¼

2p
L
¼

2p
QDx

. ð6Þ

To satisfy the Nyquist criterion, the maximum wavelength, which can be unambiguously identified, is given by
kmax ¼ 1=2Dx. Therefore, it has to be assured that there is only negligible spectral content above this
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wavenumber. This can only be done by choosing a high resolution so that the critical wavenumber is above the
highest occuring wavenumber.

The advantage of the DFT-approach is that it is easy to implement. Standard FFT algorithms can be used
and it is applicable to all profile structures independent of periodicity. The disadvantage is that it is
computational quite demanding as the complete vibration field of the profile has to be calculated and the FFT
with high resolution has to be performed. One problem for finite structures is that the wavenumber resolution
depends only on the investigated profile length L. For an adequate resolution a long profile strip has to be
calculated enlarging the computational effort involved.

Another feature of this approach is that the energy distribution in the periodic wavenumber series is readily
obtained. This gives some remarkable insight for the given excitation conditions as the excitation of different
wave types can be identified. On the other hand, it should be pointed out that this can also give misleading
results when trying to extract the general wave propagation features. Not all possible wave types in the
structure need to be excited by a certain force or moment excitation. At least, different excitation mechanisms
should be applied and the results compared to get a more general picture.

The dispersion characteristics of the profile strip A using the DFT approach are shown in Figs. 4 and 5 for
force and moment excitation, respectively. The excitation is located at the left end of the profile strip, the right
end is damped with gradually increasing loss factor in order to simulate a non-reflective boundary comparable
to a semi-infinite strip. The DFT is performed over a 6m long section from the left end in order to achieve a
good resolution.

For the DFT, the normal velocity distribution of the lower plate is calculated and interpolated to give a
uniform spatial sampling by using a spline interpolation function.

The result of the spatial Fourier transform is given by the two-sided spectrum V of the velocity distribution.
For plotting the logarithmic value of the magnitude Lv;DFT ¼ 20 log½jV j=ð5e� 8m=sÞ� is used.

Despite the simulated non-reflective boundary on the right, reflections occur in the low-frequency regime
and hence, modes are visible, manifested by faint vertical lines up to about 1000Hz.

The periodic nature of the wavenumber content is visible when using the DFT, but the energy is distributed
in a characteristic way between the principal value and the ‘side bands’. The DFT-results for profiles B and C
are not shown for the sake of brevity.
Fig. 4. DFT plot of lower plate profile A, unit force excitation at left lower side, shading limits Lv;DFT : 10 (white) . . . 90 (black) dB re.

5e� 8m=s.
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Fig. 5. DFT plot of lower plate profile A, unit moment excitation at left lower side, shading limits Lv;DFT:10 (white) . . . 90 (black) dB re.

5e� 8m=s.

Fig. 6. The positions along the periodic chain are labelled in the given way.
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The decaying waves cannot be found in the DFT-result as they decay too rapidly and do not contribute
significantly to the velocity spectrum of the complete strip. They can be extracted using the determinantal
equation or by solving the eigenvalue problem. This gives a clearer picture of the characteristic waves, but the
energy distribution cannot be extracted directly.

2.3. Dispersion characteristics using transfer matrix eigenvalue problem

As an alternative for finding the wave types in the periodic structure, the transfer matrix T of a single
subsystem can be used. The notation for the positions along the periodic chain is shown in Fig. 6.

Starting with the definition of the T-matrix

vkþ1

Fkþ1

( )
¼ T

vk

Fk

( )
(7)

and invoking Bloch’s theorem, Eq. (2), the state vectors on both sides of the periodic subsystem can be
related by

vkþ1

Fkþ1

( )
¼ l

vk

Fk

( )
; where l ¼ em. (8)
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Combining Eqs. (7) and (8) results in an eigenvalue problem, where the identity matrix I is introduced,

½T� lI�
vk

Fk

( )
¼ 0. (9)

From this equation it is obvious that l are the eigenvalues of the T-matrix. The number of eigenvalues is two
times the number of coupling coordinates. Routines for the solution of the complex eigenvalue problem are
available and can be used to find all the eigenvalues and related propagation constants of the periodic system
including the complex waves.

The only disadvantage of the approach apart from the multi-valued solution is the fact that numerical
instabilities can arise in the solution of the eigenvalue problem. The multi-valued solution exists not only for the
purely propagating waves, but also for the complex waves as emcomplex ¼ emcomplexþ2npj, n being an arbitrary integer.

Due to the nature of the T-matrix, the eigenvalues are generally complex and occur in reciprocal pairs
(li, 1=li). Assuming no material dissipation, a purely propagating wave exists if jlij ¼ 1, corresponding to pass
bands for the wave. In a stop band, the eigenvalues are real valued. An eigenvalue inside the unit circle
represents a positive (right) going wave, whereas an eigenvalue outside the unit circle represents a negative
(left) going wave.1 Complex eigenvalues can occur only in groups of four and hence are only possible for
systems with more than one coupling coordinate as there are only two eigenvalues for mono-coupled transfer
matrices (2� 2).

To each eigenvalue a certain eigenvector exists, defining the wave form of the wave type. The complete
vibration of the profile can be set up by adding the contributions of all wave types

vk

Fk

( )
¼ UT

R

Lk

Rk

( )T

. (10)

As there are 2ndof independent waves, the first ndof columns of the matrix UR are the eigenvectors of the
transfer matrix corresponding to the leftward travelling waves (li; i ¼ 1; . . . ndof ; liX1) and the last ndof

columns the right-going waves (1=li; i ¼ 1; . . . ndof ; liX1). ndof defines the number of coupling coordinates
with corresponding orthogonal eigenvectors, excluding the pass band bounding frequencies, where double
eigenvalues occur.

The vector Lk contains the amplitudes of the left-going waves and the vector Rk contains those of the right-
going waves. The wave amplitudes at adjacent bays are related by

Lkþ1

Rkþ1

( )
¼W

Lk

Rk

( )
where W ¼ U�1R TUR. (11)

Since UR is the (right) eigenvector matrix of T, the matrix W is the diagonal matrix of the eigenvalues of T and
is called the wave transfer matrix,

W ¼
K 0

0 K�1

� �
where K ¼ diagðl1; . . . ; lmÞ. (12)

Solving the eigenvalue problem in Eq. (9) results in a complete picture of free wave propagation in the strip.
The eigenvalues can be directly linked to wavenumbers and the eigenvectors establish the wave form of each
characteristic wave. Knowing the wave amplitudes at a certain position makes it possible to calculate the
complete wave amplitudes at all other positions along an infinite strip using the wave transfer matrix
1This distinction is not possible for undamped systems, where in the passbands jlj ¼ 1. In this case the distinction can be based on the

following rule provided ejot:

ImðlÞ40! k positive ! negative ðleftÞ travelling wave,

ImðlÞ ¼ 0! k ¼ 0! standing wave,

ImðlÞo0! k negative ! positive ðrightÞ travelling wave.
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containing the eigenvalues. In practice it is necessary to get the wave amplitudes for a certain excitation (forced
response). This is treated in Section 5.

The major task after the solution of the transfer matrix eigenvalues is the identification of the
different characteristic wave types, i.e. the unique separation of the wave types over the whole
investigated frequency range. Different algorithms are tried in the complex plane for the propagation
constants, but fail mainly at the points where different wave types join. A unique separation at these
points is difficult (or perhaps not possible) if the structural dissipation is set to zero. By adding a small
amount of structural dissipation (Z ¼ 0:01) it is possible to follow each characteristic wave in the
complex plane, as the coupling of the wave types is reduced. This is in accordance with the findings for
reduced flexural-longitudinal wave coupling in Ref. [18]. The eigenvalues are identified as complex conjugate
pairs and only the eigenvalues with modulus smaller than unity are taken for the identification procedure. The
sorted frequency dependent wavenumber content for the right-travelling waves 7–12 is shown for strips A–C
in Figs. 7–9.

It is obvious that the profiles with inclined members (A and B) exhibit a more involved wave propagation.
Low-frequency bending wave dispersion for the equivalent beam defined in Ref. [16] can be identified for
waves 11 (A) and 10 (B) up to about 1000Hz. For strip A, longitudinal wavenumbers can be identified in wave
8 in the range 2000–4000Hz. Wave 10 exhibits longitudinal character for strip B between 1000 and 2500Hz.
Hence, it is clear that the character of a wave can change with frequency. For strip C this kind of change does
not occur; waves 11 and 12 stay longitudinal in the frequency range up to 4000Hz. Wave 7 of strips A and B is
a purely decaying wave having a wavenumber outside the plotted range. This marked decaying process (or
growing process when regarded in the other direction) leads to numerical instability, clearly visible in the high-
frequency regime. For Profile C waves 7–10 exhibit a strong decaying component in wide frequency ranges.
Wave 10 propagates only in some frequency bands, whereas wave 9 only around 1500Hz. Above 4000Hz
both are propagating. Only the mainly longitudinal waves 11 and 12 are propagating in almost the complete
frequency range.

3. Characteristic waves

In order to plot the wave forms, the eigenvectors, including the end point velocities and forces,
are used to calculate the complete velocity pattern of the intermediate beams. For subelements without
internal joints, this can be done straightforwardly. For others, the transfer matrix of a part of the element
has to be adopted to calculate the intermediate state vectors from which the complete pattern can be
reconstructed.

The resulting characteristic waves are shown in Figs. 10–12 for a frequency of 1000Hz. For profile A the
waves 11 and 12 are propagating whilst the other wave types are either purely decaying or complex. For
practical applications, the propagating waves will dominate the overall vibration of the plate strips. Wave 11,
which can be characterized mainly by a form of bending vibration, shows a clear mixture of global and local
displacements. Wave 12 is a propagating compressional wave that also contains long and short wavelength
components.

For profile B wave types 8 and 12 are mainly propagating. Wave 8 is of compressional character and
wave 12 is a mixture of long wave bending and compressional wave.

The propagating waves of profile C at 1000Hz are number 11 (rotational wave) and 12 (compres-
sional wave).

It should be kept in mind, that no strict classification of the wave types over the complete frequency range
can be achieved as e.g. wave number 8 of profile A starts as a decaying wave at low frequencies, then reaches a
propagation zone with bending character, is complex again, turns into a compressional wave that passes over
in a bending type wave, and finally gets complex again in the investigated frequency range up to 5000Hz
(see Fig. 7).

The identification of the characteristic waves realizes the opportunity to simplify the wave propagation
in the profile strips. It is reasonable, that the decaying and complex waves do not contribute significantly to
the overall vibration of the panel, at least if there is a limited number of excitation points such that the waves
can decay.
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Fig. 7. Wavenumbers of characteristic waves of profile A extracted using T-matrix, (a) Wave 7, (b) Wave 8, (c) Wave 9, (d) Wave 10,

(e) Wave 11, (f) Wave 12, — propagating, - - decaying.
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4. Wavenumber content in characteristic waves

4.1. Theory

When looking at the wave forms of the profile strips it is obvious that the non-uniqueness of the
wavenumbers, resulting from the solution of the eigenvalue problem, is only part of the truth. It establishes a
set of possible wavenumbers that mathematically fulfil the periodic system condition. The distribution among
these wave set components is fixed and can be extracted for each characteristic wave.
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Fig. 8. Wavenumbers of characteristic waves of profile B extracted using T-matrix, (a) Wave 7, (b) Wave 8, (c) Wave 9, (d) Wave 10,

(e) Wave 11, (f) Wave 12, — propagating, - - decaying.
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The mathematical non-uniqueness for the wavenumbers (periodicity of 2p=Le) can be explained by the
limited spatial resolution of the real physical process. It is not possible to distinguish—with a spatial sampling
of Le—if in between two neighbouring endpoints of the subsystem, e.g. one or two wavelengths occur. For a
general phase shift � from point to point this means that adding 2p does not change the results at the sampling
points ej� ¼ ejð�þn2pÞ. In terms of wavenumbers kn ¼ k0 þ n2p=Le.

In contrast to this mathematical ambiguity the physical wavenumber distribution on the structure has to be
definite, which means that the energy distribution among the corresponding possible wavenumbers is fixed. It
is reasonable that for each characteristic wave such a wavenumber distribution can be determined regardless
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(e) Wave 11, (f) Wave 12, — propagating, - - decaying.
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of the excitation mechanism. The excitation only determines the characteristic wave amplitudes and not the
distribution of wavenumbers in each characteristic wave. Hence, it is possible to calculate the fixed
wavenumber distribution in each characteristic wave from a characteristic wave form.2 Summing up the
2The distribution depends not only on the characteristic wave itself but also on the component of motion of interest. For sound

radiation to the exterior the normal velocity of the outer plates is sought. The wavenumber distribution for vibrations in the x-direction

will probably be significantly different!
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Fig. 10. Wave forms of characteristic right-travelling waves for profile A (f ¼ 1000Hz), (a) Wave 7, (b) Wave 8, (c) Wave 9, (d) Wave 10,

(e) Wave 11, (f) Wave 12.
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Fig. 11. Wave forms of characteristic right-travelling waves for profile B (f ¼ 1000Hz), (a) Wave 7, (b) Wave 8, (c) Wave 9, (d) Wave 10,

(e) Wave 11, (f) Wave 12.
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Fig. 12. Wave forms of characteristic right-travelling waves for profile C (f ¼ 1000Hz), (a) Wave 7, (b) Wave 8, (c) Wave 9, (d) Wave 10,

(e) Wave 11, (f) Wave 12.

T. Kohrs, B.A.T. Petersson / Journal of Sound and Vibration 304 (2007) 691–721 703



ARTICLE IN PRESS

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

n [−]
A

n
/m

a
x
|A

n
| 
 [

−]

0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

x [m]

R
e
(ξ

 [
m

])
 /
 m

a
x
|ξ

| 
[−

]

0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

x [m]

Im
(ξ

 [
m

])
 /
 m

a
x
|ξ

| 
[−

]

Fig. 13. Wave amplitudes of space harmonic series (Profile A, f ¼ 1000Hz, wave 7, — calculated displacement (grey) - - wave series fit

(black).

T. Kohrs, B.A.T. Petersson / Journal of Sound and Vibration 304 (2007) 691–721704
contributions of all excited characteristic waves results in a unique wavenumber spectrum of the strip that can
be used, e.g. for the calculation of sound radiation.

One option to extract the frequency-dependent wavenumber content, distributed in the set of wavenumbers
is to perform a DFT of the characteristic wave forms. Though this approach is straightforward and easy to
implement, there are the same general drawbacks as mentioned previously for the method. Additionally, for
complex waves, the quantitative portions form a kind of mean value for the investigated range and hence the
amplitudes depend strongly on the length of the transformed section. It is more desirable to get the wave
amplitudes at a characteristic point (x ¼ 0). With this information the displacement at any arbitrary position
can be recalculated quite simple.

To circumvent the drawbacks mentioned for the DFT, it is possible for the periodic system to use
another method. This is possible since some information about the wavenumbers and the inherent waves is
available. The possible wavenumbers are known to be a series of wavenumbers, extracted from the transfer
matrix eigenvalue problem. It is quite reasonable to assume that this series will converge rapidly since
the main contributions will be in the range where the free wavenumbers occur in a simple homogeneous
member. This is seen from the results presented later. Hence, another option is just to use the extracted
wavenumber series as basis functions with unknown amplitudes. The amplitudes are estimated from the solution
of aðnÞ (overdetermined) linear system of equations by projecting the real displacement pattern to this
wavenumber basis.

The displacement for a characteristic wave form to wave i at any point on the profile strip can be written as
a series of ‘space harmonics’,

niðxÞ ¼
X1

n¼�1

Ai;nuie
�jki;nx with ki;n ¼ ki;0 þ

2np
Le

. (13)
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In a reduced form considering only one direction, Eq. (13) holds also for the y-component, which is the
relevant for the radiation,

xy;iðxÞ ¼
X1

n¼�1

Ai;ne
�jki;nx. (14)

The magnitude of the y-component in the eigenvector ui is included in the wave amplitude Ai;n. This
magnitude only affects the result with a constant factor, which is unimportant for the relative contributions of
ki;n. The correct scaling can be achieved by weighting the characteristic wave amplitudes in accordance with
these relative contributions.

When truncating the series at M terms and using K positions for the displacement evaluation, Eq. (14) can
be written for each characteristic wave in matrix form, omitting the wave index i,

xyðx1Þ

xyðx2Þ

. . .

xyðxK Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

e�jk�M x1 e�jkð�Mþ1Þx1 . . . e�jkM x1

e�jk�M x2 e�jkð�Mþ1Þx2 . . . e�jkM x2

. . .

. . .

e�jk�M xK e�jkð�Mþ1ÞxK . . . e�jkM xK

2
666666664

3
777777775
�

A�M

A�Mþ1

. . .

AM

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
.

ðK ; 1Þ ¼ ðK ; 2M þ 1Þ � ð2M þ 1; 1Þ. ð15Þ

The number of displacement positions K must be greater or equal to 2M þ 1, i.e. the number of desired wave
series amplitudes. If the number is greater, the system is overdetermined and can be solved using a least square
solution routine. The spacing of the K displacement points is arbitrary but has to be chosen fine enough to ensure
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a resolution necessary to represent the smallest occuring wavelength. It should be pointed out that the wave
amplitudes as well as the displacements x are complex. Initially only the real part of x was used but then the
method became unstable in some cases. This observation reveals that for a reliable reconstruction of the complex
displacements of the characteristic waves the full information including both real and imaginary part is necessary.
4.2. Results

The relative amplitudes of profile A for selected characteristic waves travelling to the right (waves
7, 11 and 12) are shown in Figs. 13–15 for a frequency of 1000Hz. For the results presented,
the y-displacement of the upper outer beams is used and the amplitudes are normalized by the maximum
amplitude. In order to check the implementation and the robustness of the method, a comparison is
performed of real displacement shapes and reconstructed displacement shapes using the estimated wave series
amplitudes.

It is clear that the method is robust in finding the relative wave series amplitudes; the matching
between the calculated displacement and the wave series fit is that precise that the curves are hardly
distinguishable in the plots. Moreover it can be stated, that in the investigated frequency range, �5pnp5
is sufficient to represent the wave forms. For the propagating waves, �2pnp2 could be sufficient as well.
The amplitudes are not symmetric (equal for plus and minus n). This is due to the asymmetric nature of the
subsystems.

A comparison is also done of the wave amplitude identification method and the DFT method. For the
propagating waves, the spectra are quite similar as is seen in Fig. 16 but the discrepancy in amplitudes
increases with wavenumber. For complex waves, the correct wavenumbers are found in the DFT, but the
amplitude is underestimated because of the decaying process.
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(black).
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The results up to now show only relative wave amplitudes for a frequency of 1000Hz. In order
to get an overview what happens in the complete frequency regime, shaded figures are created indicating the
distribution of space harmonics for each wave. The plots are normalized by the maximum amplitude
for each frequency and wave. These scaled results, in combination with the wave amplitudes for a forced
response (see Section 5), lead to the quantitative space harmonic amplitudes for each wave and as a
sum, the complete wavenumber distribution. The results for the waves propagating to the right (waves
7–12) are shown in Figs. 17–19. The plots illustrate the same real part of the wavenumbers as shown
already in Figs. 7–9 for the characteristic waves. Additionally, the shading of the plots quantifies
the relative contributions of each periodic wavenumber component. Dark zones indicate a dominance of
this component whereas light shading indicates minor contribution to the wavenumber content of each
characteristic wave.

It is obvious, that not only for 1000Hz as shown previously, but also in the complete investigated
frequency regime, the wavenumber content is localized between �200 and 200 1/m. Higher and lower
wavenumbers contribute only minutely to the overall result. It is expected that the significant
wavenumber group will gradually drift to larger values, if the behaviour were investigated for
higher frequencies beyond 5000Hz. For the presented positive travelling waves the group velocity
is mainly positive (positive slope of the curves), also for the components with negative phase speed
(negative wavenumber). This means that the space harmonic series gives a positive travelling
characteristic wave (energy flow in positive direction) as a sum. However, there are some components with
negative phase speed included, induced by the reflections at the joints. There are, indeed, some characteristic
waves with negative group velocity in some frequency ranges, e.g. wave 11 of profile A between 1400 and
2000Hz.

5. Forced response of infinite profile strip

For structural acoustic investigations in the mid and high Helmholtz number regime, theoretical infinite
systems are of great value. In those regimes the influence of boundary effects for finite structures diminishes
such that the corresponding infinite structure can be used to estimate the behaviour of the former. Hence,
forced excitation of infinite strips is investigated here.

According to Engels [19] the forced response of an infinite or semi-infinite periodic structure can be
calculated based on the eigenvalues and eigenvectors of the transfer matrix. An alternative is the direct use of
the dynamic stiffness matrix of the subsystem, outlined by Thompson [20] to calculate the wavenumbers and
forced response of a structure, applied and extended also in Ref. [21]. For the present study, the employed
slope-deflection method directly establishes the dynamic stiffness matrix. Hence, this alternative is selected for
the eigenvalue problem.
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Fig. 17. Normalized wave amplitudes of space harmonic series (Profile A), (a) Wave 7, (b) Wave 8, (c) Wave 9, (d) Wave 10, (e) Wave 11,

(f) Wave 12.
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5.1. Theory of forced response using dynamic stiffness matrix

For the infinite periodic strip, forced response can be developed by using the dynamic stiffness
matrix of a single subsystem [20]. If the periodic subsystem contains inner dofs which are not
connected to the left or right side, it is necessary to build a new reduced dynamic stiffness
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Fig. 18. Normalized wave amplitudes of space harmonic series (Profile B), (a) Wave 7, (b) Wave 8, (c) Wave 9, (d) Wave 10, (e) Wave 11,

(f) Wave 12.
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matrix as the matrix elements depend on the chosen dofs (blocked terminals). In contrast, the
mobility enables arbitrary dofs to be eliminated without changing the remaining matrix elements.
For the case with inner dofs, where no force excitation is assumed, the reduction starts with
the definition of dynamic stiffness submatrices ~K where index i indicates inner dofs, l the left
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Fig. 19. Normalized wave amplitudes of space harmonic series (Profile C), (a) Wave 7, (b) Wave 8, (c) Wave 9, (d) Wave 10, (e) Wave 11,

(f) Wave 12.
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and r the right ones,
~Kll

~Kli
~Klr

~Kil
~Kii

~Kir

~Krl
~Kri

~Krr

2
64

3
75

nl
ni
nr

8><
>:

9>=
>; ¼

Fl

0

Fr

8><
>:

9>=
>;. (16)
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The inner dofs can be eliminated by using the relation

ni ¼ � ~K
�1
ll ð

~Kilnl þ ~KirnrÞ. (17)

After some simple algebraic manipulations the new dynamic stiffness matrix can be assembled as

Kll Klr

Krl Krr

" #
nl
nr

( )
¼

Fl

Fr

( )
, (18)

with

Kll ¼ ~Kll � ~Kli
~K�1ii

~Kil; Klr ¼ ~Klr � ~Kli
~K�1ii

~Kir

Krl ¼ ~Krl � ~Kri
~K�1ii

~Kil; Krr ¼ ~Krr � ~Kri
~K�1ii

~Kir. ð19Þ

Based on Bloch’s theorem Thompson gives the following eigenvalue problem ðBþ lCÞW ¼ 0 using the
submatrices given in Eq. (19):

Krl Krr

0 I

� �
þ l

Kll Klr

�I 0

� �� � nl
nr

( )
¼

0

0

� �
. (20)

After solving the eigenvalue problem for the eigenvalues l and eigenvectors W, the solution can be
arranged in a way such that the eigenvectors of right travelling waves are put into one submatrix Wþ

containing the corresponding eigenvectors and another submatrix W� containing the left travelling
components. Within each there are displacement dofs for the left part Wþ=�l and the right part Wþ=�r of the
excited subsystem.3

The following equation relates the excitation forces at an arbitrary element within an infinite periodic
structure to the wave amplitudes of the right travelling waves R.4

F ¼ ðKllW
þ
l þ KlrW

þ
r þ KrlW

�
r W�

�1

l Wþl þ KrrW
þ
l ÞR. (21)

This can be solved for the desired wave amplitudes R in the special excitation case by an inversion process
once the excitation is specified.

The wave amplitudes of the left-travelling components can be deduced from the right-travelling amplitudes
since [20]:

L ¼ W�l Wþl R. (22)

These wave amplitudes in combination with the wavenumber content in each wave gives a quantitative
description of the wavenumber content for a given excitation of an infinite profile strip.

5.2. Results for forced wave propagation of infinite strips

In this section, the theory outlined is used to extract the wave amplitudes of the characteristic
waves for a given force (or moment) excitation of an infinite strip. The first step is the solution of the
eigenvalue problem in this case based on the dynamic stiffness matrix of the corresponding subsystem.
The eigenvectors, which are not velocity based in this case, but displacement based, are normalized
with the vector (column) norm. After extracting the wave amplitudes for the left- and right-travelling
normalized waves, the velocities at the excitation point can be calculated by using Eq. (10), resulting in the
input mobility of the infinite strip. The same profiles used previously for the finite strips A–C are used as
infinite profiles. Moreover, in order to benchmark the results, an approximate, infinite profile strip is
investigated by directly assembling the complete dynamic stiffness matrix. This means that a weakly
damped interior part (2.5m, Z ¼ 0:01) is enclosed between two end parts where damping is slightly increased
3Note that the eigenvectors and the eigenvalue problem are defined here on a displacement basis. No forces are included in the

eigenvectors.
4This seems to be the version given and used by Thompson. In the equation given by Brown the first two W matrices in the third term are

interchanged.
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Fig. 20. Wave amplitudes of characteristic waves for force excited profile strip A, (– – F1;x, — F1;y), (a) Waves 1 & 7, (b) Waves 2 & 8,

(c) Waves 3 & 9, (d) Waves 4 & 10, (e) Waves 5 & 11, (f) Waves 6 & 12.
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Fig. 21. Input mobility, profile strip A, F1;x, (— infinite – – approximately infinite).
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to form non-reflective ends. The end parts are both 2.5m and with the loss factor Z increasing gradually from
0:01 to 0:25.

The resulting wave amplitudes for all 12 waves (negative and positive going) are shown in Fig. 20 for strip
A. The wave amplitudes for strips B and C are not shown for the sake of brevity. The calculation is done for
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Fig. 22. Input mobility, profile strip A, F 1;y, (— infinite – – approximately infinite).
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Fig. 23. Input mobility, profile strip B, F1;y, (— infinite – – approximately infinite).
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all three profiles and for two of the six excitation components (F 1;x;F 1;y). A selection of corresponding input
mobilities is shown in Figs. 21–24. The F 1;x excitation case is similar for all three strips and therefore only
plotted for strip A.

The mobility for the infinite profile strips resemble those of the approximate, infinite strips at sufficiently
high frequencies. Because of the longer wavelength for the longitudinal wave components, which are excited
stronger by axial force excitation, the deviations are larger than for transversal force excitation.

The portion of the longitudinal waves is much higher in the low-frequency regime for axial excitation and all
profiles than for transversal excitation. Because of the transition between the wave types this dominance is
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Fig. 24. Input mobility, profile strip C, F 1;y, (— infinite – – approximately infinite).
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Fig. 25. Wave amplitudes of right-travelling waves along profile strip (Profile A) for force y-excitation at element number 0 (þ Wave 7,

� Wave 8, � Wave 9, 	 Wave 10, � Wave 11, & Wave 12).
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reduced at high frequencies. For the transversal excitation the ‘bending’ type waves are dominant in the pass
bands.

It is anticipated that the wave amplitudes are changing along the profile, at least for decaying and complex
waves. Wave amplitudes shown in Fig. 20 are given for the point of excitation. Two examples of the wave
amplitudes along the strip are shown for profiles A and B in Figs. 25 and 26. Depending on the type of wave,
the wave amplitudes decay strongly for complex and decaying waves and very little for propagating waves,
where only the small structural damping attenuates the wave amplitudes.
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Fig. 27. Wavenumber plots using DFT of strip A introducing maximum random length variations of (a) 0%, (b) 5%, (c) 10% and

(d) 50% (force excitation F1;y).
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Fig. 26. Wave amplitudes of right-travelling waves along profile strip (Profile B) for force y-excitation at element number 0 (þ Wave 7,

� Wave 8, � Wave 9, 	 Wave 10, � Wave 11, & Wave 12).
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6. Aperiodicity

6.1. Influence of periodicity perturbations on wave propagation

Apart from the DFT, the presented approaches for wavenumber extraction are only applicable to periodic
profiles. However, as industrial profiles always have periodicity perturbations, it is of interest to investigate the
influence of these perturbations on the dispersion characteristics. Different approaches are available:
	

Fi

de
Application of the DFT method: the problem here is the low resolution if a short profile strip shall be
investigated. One possibility to get a higher resolution is the use of a repeated strip. Moreover, the
wavenumbers are smeared by the aperiodic features (see Fig. 27 for introducing random length variations to
form aperiodic profiles based on profile A). For a randomization level of 5%, the characteristic wave
distribution is conserved, for higher randomness, only the low-frequency behaviour is maintained whereas
the high-frequency wavenumber components are smeared.

	
 Assuming that the periodic element is not part of the profile but is formed by the complete aperiodic profile,
it should be possible to use the same tools as outlined for strictly periodic systems. In practice this would
mean that one calculates the complete mobility matrix of the profile strip and uses the result in the
determinantal equation to find the propagating waves. In the same way, the eigenvalue problem approach
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using the T-matrix could be used. However, this is probably not practicable because of numerical instability
of the transfer matrix for large systems.
The latter idea is marred by deficiencies. By using the mobility matrix of three coupled subelements the same

wavenumber content can be extracted as for one subelement but additionally, there are other spurious waves
coming into play. The periodicity of the wave number spectrum with period 2p=Le introduces these additional
spurious waves as Le increases if more than one element is used. Due to this fact the results using the complete
aperiodic strip will not give real insight in the wave propagation characteristics as the periodicity ‘hides’ the
dominating wavenumbers.

Fig. 28 illustrates the resulting spectrum for three subsystems in comparison with only one subsystem. The
additional wavenumbers in the plots can be linked to the original ones by mirroring the original values at the
periodic lines (p=Le þ n2p=Le).
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(e)

g. 29. Deflection shapes of (a) strictly periodic profile strip A, (b) maximum 1%, (c) 5%, (d) 10%, (e) 50% random length variation.

rce excitation F y at left end, 2500Hz. Same scaling is maintained for all subplots.
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g. 30. Input mobility for randomly varied profile strip A (force excitation in y-direction at left end) þ strictly periodic, � 5%, � 10%,

50% random length variations of subsystems.
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Upon solving the eigenvalue problem of the T-matrix the results, not included here for the sake of brevity, show
the strong numerical instabilities arising. No meaningful results can be obtained for more than two elements.

In summary, only the DFT method is applicable for the extraction of wavenumber contents of aperiodic
profile strips; the methods used for strictly periodic strips fail.

6.2. Influence of periodicity perturbations on deflection shapes and mobilities

One objective of this study is the determination of an acceptable criteria for the perturbations up to which the
influence is of minor importance. Therefore, different calculations with the generic finite profiles presented in
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Fig. 31. Transfer mobility for randomly varied profile strip A (force excitation in y-direction at left end, response in y-direction

approximately at centre of strip) þ strictly periodic, � 5%, � 10%, 	 50% random length variations of subsystems.
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Fig. 32. Input mobility for randomly varied profile strip B (force excitation in y-direction at left end) þ strictly periodic, � 5%, � 10%,

	 50% random length variations of subsystems.
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Fig. 33. Transfer mobility for randomly varied profile strip B (force excitation in y-direction at left end, response in y-direction

approximately at centre of strip) þ strictly periodic, � 5%, � 10%, 	 50% random length variations of subsystems.
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Ref. [16] are performed with random perturbations. In this case, the length of each subsystem is varied with a
uniformly distributed random number on an interval set by the maximum deviation (in percent) from the original
periodic length. Values in the range from 1% to 50% are used and results for deflection shapes are shown in
Fig. 29.

A more general investigation of this topic requires, e.g. Monte-Carlo simulations with different random
deviations. This is not done in detail here because of the inherent computational and evaluation effort
involved. Only one kind of randomization is considered. This can provide an informative basis for the
influence of periodicity perturbations.

For profile A the forced deflection shapes (excitation Fy at left end) are shown in a pass band (2500Hz) in Fig.
29. 1% randomness does not alter the deflection form, the 5% realization reduces the vibration levels on the
complete strip significantly. For 50% random length variation the vibration is localized in some regions of the strip.

The influence on the input and transfer mobility is plotted for profile A in Figs. 30 and 31. The strip is force
excited at the left end in the y-direction and the response is observed at a joint approximately at the centre of
the finite strip, also in the y-direction. The corresponding plots for profile B are shown in Figs. 32 and 33 and
for profile C in Figs. 34 and 35. As in Ref. [16] the results are again plotted for a force per unit length in
z-direction. In order to increase legibility, the 1% variation case is suppressed. It is obvious that only large
perturbations in the structure have significant influence on the mobilities. For profile C, where distinct pass
and stop bands are present, the random length variations have only a small effect on the general trends. The
influence on the transfer mobilities is more pronounced than for the real part of the input mobility. For the
low-frequency behaviour, the influence of periodicity perturbations is less pronounced than for higher
frequencies, where significant distortion of the pattern is more commonplace.

These results suggest that periodic effects will not disappear by small perturbations, at least for the
investigated geometries. Hence, it seems viable to design structures in a way to use e.g. the stop band
behaviour for noise control purposes.
7. Concluding remarks

The complete picture of propagating, decaying and complex waves can be gained by solving the transfer-
matrix eigenvalue problem. For the profiles considered up to six characteristic waves can be identi-
fied, travelling in each direction. The wavenumber content in each characteristic wave is formed of several
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Fig. 35. Transfer mobility for randomly varied profile strip C (force excitation in y-direction at left end, response in y-direction

approximately at centre of strip) þ strictly periodic, � 5%, � 10%, 	 50% random length variations of subsystems.
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Fig. 34. Input mobility for randomly varied profile strip C (force excitation in y-direction at left end) þ strictly periodic, � 5%, � 10%,

	 50% random length variations of subsystems.
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‘‘space harmonics’’, realising a periodic wavenumber spectrum. The relative contributions in the wavenumber
series are fixed for each characteristic wave and can be identified from the complete characteristic wave forms.
The extraction of the characteristic waves establishes means to simplify the wave propagation in the light
weight profile strips. Provided there is a limited number of excitation points the decaying and complex waves
will not contribute significantly to the overall vibration of the strip.

The amplitudes of the characteristic waves for forced vibrations of infinite profile strips and resulting
mobilities can be calculated by using the dynamic stiffness matrix of a single periodic subsystem. The amplitudes
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and the wavenumber content of each characteristic wave establishes the basis for a quantitative wavenumber
distribution on the profile faces, which can be used for structure-borne sound and radiation problems.

A brief study on irregularity effects shows that the influence is limited. The general dynamic behaviour of
the periodic profiles are conserved even for high random length variations of up to 10%.
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